Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors

Identifieur interne : 001347 ( Main/Repository ); précédent : 001346; suivant : 001348

Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors

Auteurs : RBID : Pascal:13-0026913

Descripteurs français

English descriptors

Abstract

Properties of InAlN/GaN heterostructure field-effect transistors with thermally oxidized (750°C, 2 min) InAlN barrier layers of different compositions (InN = 13%, 17%, and 21%) were evaluated. The saturation drain current was inversely proportional to the InN content and was lower than that obtained with nonoxidized devices. From the capacitance measurement, the resulting sheet charge density decreased from 1.1 x 1013 cm-2 to 0.6 x 1013 cm-2 with increased InN content, and it was only approximately 50% of that of the nonoxidized counterparts. The oxide thickness of approximately 1 nm was extracted from the zero-bias capacitances. The pulsed measurements yielded a very high gate lag independent from the InAlN composition (the pulsed-to-static drain current ratio was ∼0.5 for a 200-ns pulse width). On the other hand, a significantly lower gate lag was observed on nonoxidized SiNx passivated InAIN/GaN devices. The results demonstrate that a high density of trap states was created in the thermally oxidized InAIN/GaN structures.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0026913

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors</title>
<author>
<name sortKey="Kordos, P" uniqKey="Kordos P">P. Kordos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microelectronics, Slovak University of Technology</s1>
<s2>81219 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>81219 Bratislava</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Electrical Engineering, Slovak Academy of Sciences</s1>
<s2>84104 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>84104 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mikulics, M" uniqKey="Mikulics M">M. Mikulics</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Research Centre Jülich</s1>
<s2>52435 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52435 Jülich</wicri:noRegion>
<wicri:noRegion>Research Centre Jülich</wicri:noRegion>
<wicri:noRegion>Research Centre Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stoklas, R" uniqKey="Stoklas R">R. Stoklas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microelectronics, Slovak University of Technology</s1>
<s2>81219 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>81219 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cico, K" uniqKey="Cico K">K. Cico</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microelectronics, Slovak University of Technology</s1>
<s2>81219 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>81219 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dadgar, A" uniqKey="Dadgar A">A. Dadgar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Experimental Physics, University Magdeburg</s1>
<s2>39016 Magdeburg</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>39016 Magdeburg</wicri:noRegion>
<wicri:noRegion>University Magdeburg</wicri:noRegion>
<wicri:noRegion>39016 Magdeburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grutzmacher, D" uniqKey="Grutzmacher D">D. Grutzmacher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Research Centre Jülich</s1>
<s2>52435 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52435 Jülich</wicri:noRegion>
<wicri:noRegion>Research Centre Jülich</wicri:noRegion>
<wicri:noRegion>Research Centre Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krost, A" uniqKey="Krost A">A. Krost</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Experimental Physics, University Magdeburg</s1>
<s2>39016 Magdeburg</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>39016 Magdeburg</wicri:noRegion>
<wicri:noRegion>University Magdeburg</wicri:noRegion>
<wicri:noRegion>39016 Magdeburg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0026913</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0026913 INIST</idno>
<idno type="RBID">Pascal:13-0026913</idno>
<idno type="wicri:Area/Main/Corpus">001435</idno>
<idno type="wicri:Area/Main/Repository">001347</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barrier layer</term>
<term>Capacitance</term>
<term>Capacitance measurement</term>
<term>Charge density</term>
<term>Charge measurement</term>
<term>Defect states</term>
<term>Density of states</term>
<term>Drain current</term>
<term>Electron charge distribution</term>
<term>Field effect transistors</term>
<term>Gallium nitride</term>
<term>Gallium tellurides</term>
<term>Gates</term>
<term>Heterojunction field effect transistor</term>
<term>Heterostructures</term>
<term>High density</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium nitride</term>
<term>Oxidation</term>
<term>Pulse current</term>
<term>Silicon nitride</term>
<term>Thickness</term>
<term>Traps</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Hétérostructure</term>
<term>Transistor effet champ</term>
<term>Couche barrière</term>
<term>Courant drain</term>
<term>Mesure capacité électrique</term>
<term>Mesure charge électrique</term>
<term>Densité charge</term>
<term>Distribution charge électronique</term>
<term>Epaisseur</term>
<term>Capacité électrique</term>
<term>Electrode commande</term>
<term>Courant impulsionnel</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Tellurure de gallium</term>
<term>Nitrure de silicium</term>
<term>Densité élevée</term>
<term>Densité état</term>
<term>Piège</term>
<term>Transistor effet champ hétérojonction</term>
<term>Oxydation</term>
<term>Etat défaut</term>
<term>GaN</term>
<term>InN</term>
<term>Substrat GaN</term>
<term>SiNx</term>
<term>8105E</term>
<term>8530T</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Properties of InAlN/GaN heterostructure field-effect transistors with thermally oxidized (750°C, 2 min) InAlN barrier layers of different compositions (InN = 13%, 17%, and 21%) were evaluated. The saturation drain current was inversely proportional to the InN content and was lower than that obtained with nonoxidized devices. From the capacitance measurement, the resulting sheet charge density decreased from 1.1 x 10
<sup>13</sup>
cm
<sup>-2</sup>
to 0.6 x 10
<sup>13</sup>
cm
<sup>-2</sup>
with increased InN content, and it was only approximately 50% of that of the nonoxidized counterparts. The oxide thickness of approximately 1 nm was extracted from the zero-bias capacitances. The pulsed measurements yielded a very high gate lag independent from the InAlN composition (the pulsed-to-static drain current ratio was ∼0.5 for a 200-ns pulse width). On the other hand, a significantly lower gate lag was observed on nonoxidized SiN
<sub>x</sub>
passivated InAIN/GaN devices. The results demonstrate that a high density of trap states was created in the thermally oxidized InAIN/GaN structures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KORDOS (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MIKULICS (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STOKLAS (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CICO (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DADGAR (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GRUTZMACHER (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KROST (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Microelectronics, Slovak University of Technology</s1>
<s2>81219 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Electrical Engineering, Slovak Academy of Sciences</s1>
<s2>84104 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Research Centre Jülich</s1>
<s2>52435 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Experimental Physics, University Magdeburg</s1>
<s2>39016 Magdeburg</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>3013-3016</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000505438430040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0026913</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Properties of InAlN/GaN heterostructure field-effect transistors with thermally oxidized (750°C, 2 min) InAlN barrier layers of different compositions (InN = 13%, 17%, and 21%) were evaluated. The saturation drain current was inversely proportional to the InN content and was lower than that obtained with nonoxidized devices. From the capacitance measurement, the resulting sheet charge density decreased from 1.1 x 10
<sup>13</sup>
cm
<sup>-2</sup>
to 0.6 x 10
<sup>13</sup>
cm
<sup>-2</sup>
with increased InN content, and it was only approximately 50% of that of the nonoxidized counterparts. The oxide thickness of approximately 1 nm was extracted from the zero-bias capacitances. The pulsed measurements yielded a very high gate lag independent from the InAlN composition (the pulsed-to-static drain current ratio was ∼0.5 for a 200-ns pulse width). On the other hand, a significantly lower gate lag was observed on nonoxidized SiN
<sub>x</sub>
passivated InAIN/GaN devices. The results demonstrate that a high density of trap states was created in the thermally oxidized InAIN/GaN structures.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche barrière</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Barrier layer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Courant drain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Drain current</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Corriente dren</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Mesure capacité électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Capacitance measurement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Mesure charge électrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Charge measurement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Charge density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Distribution charge électronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electron charge distribution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Distribución carga electrónica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Capacité électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Capacitance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gates</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Courant impulsionnel</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Pulse current</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Corriente impulsional</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Tellurure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium tellurides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrure de silicium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Silicon nitride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Silicio nitruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>High density</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Piège</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Traps</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Transistor effet champ hétérojonction</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Heterojunction field effect transistor</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Transistor efecto campo heterounión</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Oxydation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Oxidation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat GaN</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>SiNx</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8105E</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8530T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001347 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001347 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0026913
   |texte=   Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024